skip to main content


Search for: All records

Creators/Authors contains: "Smith, Jesse E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Selective autophagy is a conserved subcellular process that maintains the health of eukaryotic cells by targeting damaged or toxic cytoplasmic components to the vacuole/lysosome for degradation. A key player in the initiation of selective autophagy in S. Cerevisiae (baker’s yeast) is a large adapter protein called Atg11. Atg11 has multiple predicted coiled-coil domains and intrinsically disordered regions, is known to dimerize, and binds and organizes other essential components of the autophagosome formation machinery, including Atg1 and Atg9. We performed systematic directed mutagenesis on the coiled-coil 2 domain of Atg11 in order to map which residues were required for its structure and function. Using yeast-2-hybrid and coimmunoprecipitation, we found only three residues to be critical: I562, Y565, and I569. Mutation of any of these, but especially Y565, could interfere with Atg11 dimerization and block its interaction with Atg1 and Atg9, thereby inactivating selective autophagy. 
    more » « less
  2. With the view of developing electrophilic late-transition-metal catalysts, we have now synthesized [(o-(Ph2P)C6H4)2Sb(OTf)2]Pt(OTf) (2) and [(o-(iPr2P)C6H4)2Sb(OTf)2]Pt(OTf) (4) by treatment of the corresponding trichlorides ([(o-(R2P)C6H4)2SbCl2]PtCl (R = Ph, iPr)) with 3 equiv of AgOTf. The crystal structures of 2 and 4 confirmed that the chloride ligands have been fully substituted by more labile triflate ligands. Despite structural similarities in the dinuclear cores of 2 and 4, only 2 acts as a potent carbophilic catalyst in enyne cyclization reactions. The high activity of 2 is also reflected by its ability to promote the addition of pyrrole and thiophene derivatives to alkynes. Structural and computational analyses suggest that the superior reactivity of 2 results from both favorable steric and electronic effects. Finally, a comparison of 2 with the previously reported self-activating catalyst [(o-(Ph2P)C6H4)2Sb(OTf)2]PtCl underscores the benefits of triflate for chloride substitution. 
    more » « less